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Abstract

This study examines the complex dynamics of a tripod supporter system with shape memory alloy
(SMA) alongside Adaptive Fuzzy Sliding Mode Control (AFSMC). It’s motivated by the growing in-
terest in creating smarter SMA systems and aims to understand how these systems behave in different
situations. The study also seeks to develop better control methods to handle their complexities and
uncertainties. Through detailed computer simulations, the research systematically explores how the
system behaves in various phases: martensite, transition, and austenite. Each phase is carefully exam-
ined to uncover the intricate dynamics governing the system under different conditions. The research
begins with a comprehensive review of existing literature, highlighting gaps in the understanding of
the system behaviour under a quasi-periodic complex excitation with three frequency terms and the
limitations of traditional control methods, while also showcasing the potential of AFSMC to address
these challenges effectively. The system’s martensite, transition, and austenite phases, characterized
by varying temperatures are explored under damping conditions of ξ = 0.1 and ξ = 1.5 and for
forcing parameter of γ = 0.045. This investigation unveils phenomena such as chaotic behavior and
attracting tori across all phases. Analysis of Lyapunov exponents sheds light on the system’s sen-
sitivity to initial conditions and convergence tendencies, while bifurcation simulations consistently
indicate the potential for bistability within the system. The study also evaluates the effectiveness of
AFSMC across the three phases, showing robust performance in reducing vibrations. Comparative
analyses against traditional sliding mode control methods provide compelling evidence of AFSMC’s
superiority, emphasizing its resilience and adaptability in managing uncertainties. In summary, this
study offers a comprehensive exploration of SMA-integrated system dynamics and AFSMC’s effica-
cy in control, providing valuable insights for the broader field of nonlinear control and SMA-based
engineering applications.

Keywords:Tripod supporter, SMA, quasi periodic, Chaos, AFSMC
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1
Introduction

1.1 Background

Shape memory alloys (SMAs) have garnered significant attention in the past few decades due to their

unique properties and versatile applications across various fields. These metallic alloys exhibit the

remarkable ability to recover their original shape from significant deformations through thermal pro-

cessing, making them invaluable in engineering applications . The behavior of SMAs, characterized

by martensitic phase transformation, presents intriguing challenges and opportunities for researchers

and engineers.

In the realm of structural dynamics, the study of systems subjected to multi-frequency excitation

1



2 Chapter 1. Introduction

has become a focal point for understanding complex behaviors and responses. The investigation of

quasiperiodic excitation with multiple terms offers a deeper insight into the dynamics of systems

under intricate stimuli, revealing novel phenomena and interactions. Expanding the research from

dual-frequency to tri-frequency excitation introduces a new level of complexity, paving the way for

exploring non-linear dynamics.

However, a notable gap in the current literature lies in the application of control strategies to systems

under multi-frequency excitation. While existing studies focus on the dynamics and behavior of such

systems, the integration of advanced control techniques, such as adaptive fuzzy sliding mode con-

trollers(AFSMC), remains unexplored. The addition of a controller not only enhances the system’s

stability and robustness but also bridges the gap between theoretical analysis and practical implemen-

tation.

Therefore, this thesis aims to address this gap by investigating the dynamics of a three-leg supporter

with shape memory alloy under quasiperiodic excitation with three terms and incorporating an AF-

SMC for enhanced control and stability. By combining theoretical analysis with practical control

strategies, this research seeks to advance our understanding of complex dynamical systems under

multi-frequency excitation and contribute to the development of effective control methodologies for

engineering applications.

1.1.1 Shape Memory Alloys

Shape memory alloys (SMAs) belong to a category of smart materials with unique properties stem-

ming from changes in their microstructure when exposed to external non-mechanical stimuli, such

as variations in temperature. In thermally responsive SMAs, they exhibit reversible solid-solid, dif-

fusionless thermoelastic phase transitions between a stable high-temperature austenitic phase and a

low-temperature martensitic phase. These transformations give rise to remarkable phenomena like

the shape memory effect (SME) and superelasticity (SE). The SME is the capacity to revert to a

predefined shape when heated. Meanwhile, SE refers to their ability to recover significant strains

(approximately 8%) and the associated substantial stress-strain hysteresis during mechanical loading
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and unloading under isothermal conditions [1].

In 1932, Ölander made the initial observation of the SME, and it was in 1941 that Vernon introduced

the term ’shape memory.’ Fast forward to 1961, Buehler and Wiley, while conducting research at

the US Naval Ordinance Laboratory, identified a group of alloys, specifically Nickel and Titanium,

that exhibited the shape-memory phenomenon. Due to a combination of factors, including the alloy’s

composition and its discovery at the Naval Ordinance Lab, this alloy became known as NiTiNOL (a

portmanteau of Nickel, Titanium, and Naval Ordinance Lab). These discoveries have generated con-

siderable interest and extensive research, both in terms of understanding the properties and exploring

potential unique applications in various structures [2].

Over the past twenty years, substantial research and development efforts have been dedicated to S-

MAs. These endeavors have been propelled by advancements in materials science, improvements

in laboratory equipment, the application of advanced computational methods, and various other en-

hancements. These noteworthy progressions in both research and technology have led to a deeper

understanding of phase transformations, streamlined production and utilization processes, and the

identification of cost-effective alloys exhibiting shape-memory properties [2]. There has been signif-

icant research and experimentation involving laminated composites that incorporate embedded SMA

wires. This development has brought forth novel attributes and qualities to the host structures [3].

Cost-effective shape memory alloys based on Fe and Cu are developed to reduce the limitation due to

the high cost of manufacturing and installation of NiTinol alloy [2].

SME and related occurrences are rooted in a primary phase shift between a high-temperature phase,

typically known as austenite, and a low-temperature phase, often referred to as martensite. The tran-

sition from austenite to martensite commences and concludes at specific temperatures, known as the

martensite start temperature (Ms) and martensite finish temperature (Mf) [1]. Conversely, tempera-

ture transitions from martensite to austenite are termed austenite start temperature (As) and austenite

finish temperature (Af). Depending on the stress and temperature conditions concerning these trans-

formation temperatures, various phenomena can be observed: The SME, the two-way shape memory

effect (TWSME), and SE. In all instances, alterations are made to operating temperatures and/or ap-

plied stresses, while the inherent transformation temperatures of the utilized SMA remain constant
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during use [4].

Shape memory alloy characteristics are dependent on the compositions of the alloying materials. The

most common compositions of shape memory alloys are the NiTi, copper-based, and ferrium-based

alloys. SMAs are a class of materials known for their unique properties, which are attributed to their

specific composition.

The NiTi alloy has characteristics in SME, SE that outperform other shape memory alloy types.

Nickel (Ni) and titanium (Ti) are the primary composition of binary NiTi shape memory alloy [2].

Nickel is a crucial component in SMAs, typically comprising around 50% to 55% of the alloy by

weight. It contributes to the alloy’s shape memory effect and superelasticity properties. Nickel-rich

regions (austenite phase) of the alloy are responsible for high-temperature stability and flexibility.

Titanium accounts for the remaining 45% to 50% of the alloy’s composition. It plays a significant

role in the low-temperature martensitic phase of the SMA, allowing the alloy to undergo reversible

phase transformations and exhibit shape memory properties. The cost of manufacturing and installing

NiTi alloy is relatively high, limiting its application to specific areas. Additionally, its high thermal

sensitivity makes it unsuitable for systems operating in rapidly changing environments [2].

1.1.2 Dynamics of tripod supporter and control strategies

Expanding the investigation of tripod supporter with SMA from quasiperiodic excitation with two

terms to three terms presents an intriguing research gap in the current literature. While existing studies

have explored the dynamics and behavior of systems under dual-frequency excitation, the extension to

tri-frequency excitation introduces a new level of complexity and richness in the system’s response.

By incorporating an additional frequency component, the research can delve into the interactions

phenomena that arise from the interplay of three distinct frequencies.

Investigating quasiperiodic excitation with three terms offers the opportunity to uncover novel dy-

namics, such as multi-stability in the whole phases of the system not observable in dual-frequency

systems. This extension can provide a more comprehensive understanding of the system’s behav-

ior under multi-frequency excitation, offering insights into how the additional frequency component
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influences the system’s stability, bifurcation scenarios, and chaotic behavior.

Furthermore, exploring the effects of tri-frequency excitation can have practical implications for engi-

neering applications where systems are subjected to complex multi-frequency inputs. Understanding

how structures respond to three-frequency excitation can inform the design of more robust and adap-

tive control strategies tailored to such intricate excitation profiles. Overall, investigating quasiperiodic

excitation with three terms fills a significant gap in the current research landscape and opens up new

avenues for exploring the dynamics of complex systems under multi-frequency stimuli.

Integrating an AFSMC into the study of a three-leg supporter under quasiperiodic excitation with

three terms presents a notable research gap in the existing literature. While the current research

focuses on the system’s dynamics and response to dual-frequency excitation, the introduction of a

controller adds a new dimension by addressing the practical aspect of controlling and stabilizing the

system in real-time.

The incorporation of an adaptive fuzzy sliding mode controller offers several advantages, including

robustness to uncertainties, disturbances, and variations in the system parameters. By adapting the

controller’s parameters based on the system’s dynamics and input signals, the AFSMC can enhance

the system’s stability and resilience to external perturbations.

Furthermore, the AFSMC allows for online tuning and adjustment, enabling the system to adapt

to changing operating conditions and disturbances effectively. This adaptive control strategy can

improve the system’s performance under varying excitation profiles and enhance its ability to track

desired trajectories while mitigating the effects of nonlinearities and uncertainties inherent in the

system.

By incorporating an AFSMC, the research can bridge the gap between theoretical analysis and prac-

tical implementation, offering insights into the feasibility and effectiveness of control strategies in

real-world applications. Additionally, studying the interaction between the controller and the multi-

frequency excitation can provide valuable knowledge on the design and optimization of control sys-

tems for complex dynamical systems. Overall, integrating an adaptive fuzzy sliding mode controller

represents a significant advancement in the study of multi-frequency-excited tripod system with S-
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MA and opens up avenues for enhancing the system’s controllability and performance in engineering

applications.

1.2 Problem Statement

SMA represent a class of intelligent materials garnering significant interest in contemporary research.

Within the realm of SMA applications, the construction of smart systems has emerged as a promising

avenue. Specifically, the incorporation of shape memory alloys into a Tripod supporter has potential

utility, particularly in aerospace and machining industries, improving the existing tripod supporters.

Despite these advancements, there exists a notable gap in the comprehensive exploration of the non-

linear dynamics exhibited by shape memory alloy tripod systems for quasi periodic with tri-frequency

complex excitation across varying operational conditions.

Efficiently harnessing the intricate nonlinear behaviors inherent in these systems necessitates a thor-

ough understanding, and thus, the control of such nonlinearities becomes imperative. The existing

body of literature falls short in addressing the crucial aspect of controlling the nonlinear behavior

inherent in the Tripod system integrated with SMA bars. Consequently, this research endeavors to

bridge these gap by conducting a rigorous investigation into the nonlinear dynamics for qusi-periodic

excitation with three frequency terms and implementing AFSMC for the Tripod supporter, thereby

advancing the understanding and practical utilization of smart tripod systems in relevant industrial

domains.

1.3 Research Objectives

1.3.1 General Objective

The general objective of this thesis is to investigate the non-linear dynamics and design AFSMC for

a tripod supporter with shape memory alloy.
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1.3.2 Specific Objectives

The specific objectives of this thesis are as follows:

• To develop the mathematical model and analyze the nonlinear dynamic behaviour of the tripod

supporter.

• Design an Adaptive Fuzzy sliding Mode Controller(AFSMC) for the system

• Measure the performance of the AFSMC and compare it with Sliding Mode Controller(SMC)

employing performance matrices such as overshoot, falltime, IAE, ISE.

1.4 Methodology

The investigation of the nonlinear dynamics of the tripod supporter with SMA and the design of its

controller involve a systematic and comprehensive approach. This methodology is structured to first

establish a constitutive model, followed by the mathematical modeling of the entire system using

Newton’s second law. Subsequently, the exploration of the nonlinear dynamics includes the use of

phase portraits, Lyapunov exponent analysis, basin of attraction simulations, and bifurcation simu-

lations. Additionally, an Adaptive Fuzzy Sliding Mode Controller(AFSMC) is integrated into the

system.

1. Constitutive Model: Falk Polynomial

The constitutive model plays a crucial role in capturing the mechanical behavior of the tripod sup-

porter. In this study, the Falk polynomial constitutive model of (1.1) is employed [5]. This model is

utilized to characterize the mechanical properties of the tripod supporters SMA materials investiga-

tion.

σ = a1(T −Tm)ε −a2ε
3 +a3ε

5 (1.1)

2. Mathematical Modelling: Newton’s Second Law
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To mathematically represent the dynamics of the tripod supporter with SMA, Newton’s second law is

applied as in Equation(1.2). The equations derived from this fundamental principle of second law of

motion serve as the foundation for understanding the motion and forces within the system. Through a

rigorous mathematical analysis, the dynamic equations governing the behavior of the tripod supporter

are formulated.

ΣF = ma (1.2)

3. Non-linear Dynamics Analysis

Phase Portrait Analysis: Visualizing the system’s behavior is essential for gaining insights into its

non-linear dynamics. Phase portraits are constructed to illustrate the trajectory of the system in its

state space, providing a qualitative understanding of its behavior under varying conditions.

Lyapunov Exponent Analysis: The Lyapunov exponent, a quantitative measure of the system’s sensi-

tivity to initial conditions, is calculated to assess the stability and chaos in the system. This analysis

aids in identifying critical points and understanding the long-term behavior of the system.

Bifurcation Simulations: Bifurcation simulations are employed to analyze how the system’s behavior

changes as a function of control parameters. This investigation helps identify bifurcation points and

understand the transition between different dynamical regimes, contributing to a deeper comprehen-

sion of the system’s complex behavior.

4. Controller Integration

The controllers employed are robust and adaptive control methods. The robust sliding mode controller

is integrated with adaptive fuzzy approximator to form an adaptive fuzzy sliding mode controller. The

results of this controller are compared with the sliding mode controller. The overall process of the

study is summarized by the flowchart shown in Figure(1.1)
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Figure 1.1: Flowchart of the Methodology of the study
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1.5 Scope and limitations of the thesis

This research aims to contribute to the understanding of the dynamic behavior of a Tripod supporter

with Shape Memory Alloy (SMA) through comprehensive mathematical modeling and simulation-

based analyses. The primary focus lies in the mathematical representation of the SMA bars within

the supporter, investigating the nonlinear dynamics through simulation techniques, and modeling the

application of an Adaptive Fuzzy Sliding Mode controller(AFSMC) under various conditions. The

scope encompasses a detailed examination of the system’s response, stability, and control strategies

to enhance the overall performance.

Due to resource constraints and the nature of the study, experimental tests are not included in the

research. The absence of physical experimentation may limit the direct correlation of simulation

results to the actual performance of the tripod supporter with SMA in real-world scenarios.

It is important to note that the research activities faced limitations during the Tigrai conflict from 2020

to 2023. The socio-political conditions in the region affected access to certain resources, potentially

impacting the comprehensiveness of the study. Efforts have been made to mitigate these limitations,

but the potential influence on the study’s scope and execution should be acknowledged.

1.6 Thesis Outline

This thesis explores the dynamics of a tripod supporter integrated with shape memory alloy (SMA)

and Adaptive Fuzzy Sliding Mode Control (AFSMC). It commences with an Introduction, followed

by a comprehensive Literature Review delving into SMA systems and control methods. Chapter

3 presents the mathematical model of the system and its stability analysis methodology. Chapter

4 outlines the methods employed for investigating nonlinear dynamics and AFSMC design. The

Results and Discussion chapter presents findings from nonlinear dynamic analysis and controller

performance. The final chapter, Conclusion and Recommendations, deals the outcomes and proposes

future research directions



2
Literature Review

2.1 Tripod Supporter

Archetypal models serve as prototypes that symbolize broader systems, playing a crucial role in an-

alyzing the stability features of structures [6]. The tripod support structure, a mechanical system

utilized across diverse sectors such as aviation and manufacturing [7], is capable of achieving precise

motion with adequate inclination. By integrating shape memory bars, it becomes easier to control

precise movements and maintain specific positions. Therefore, it is essential to explore and showcase

the performance of this tripod support when equipped with a shape memory alloy structure using an

archetypal model.

11
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2.2 Shape Memory Alloys

In recent years, researchers have made significant progress in understanding and harnessing the po-

tential of shape memory alloys (SMAs). These materials, such as Ni-Ti and Cu-Zn-Al, exhibit re-

markable properties, including a large reversible strain due to superelasticity. New types of alloys

that outperform the commercially available NiTi alloy are being researched [8, 9].

Notably, Tanaka [8] described a high-strength shape memory alloy with a superelastic strain exceed-

ing 13%, having tensile strength above 1000 megapascal. This superelastic strain is almost twice the

maximum superelastic strain observed in NiTi. Due to its additional high damping capacity, the paper

suggests this ferrous polycrystalline shape memory alloy can be employed as a high damping and

sensor material.

Canadinc et al. [9] delved into the characteristics of multi-component alloys, focusing on superelas-

ticity and thermal actuation behavior, while introducing the concept of multi-component ultra-high

temperature shape memory alloys, opening up new possibilities for SMA applications. It suggest-

s quaternary and quinary alloying to improve the martensitic transformation temperatures. These

multi-component SMAs also have demonstrated good superelastic behavior.

The shape memory effect might be degraded due to the machining process. Thus, it is important to ap-

propriately choose a machining process for SMAs. Chaudhari [10] explored optimization techniques

for preserving the shape memory effect during the machining process, which could significantly ex-

pand SMA applications. The modified process produced an SMA with a shape memory effect similar

to the original material.

Furthermore, T. Wheeler et al. [11] from the Consortium for the Advancement of Shape Memory

Alloy Research and Technology has been dedicated to enabling revolutionary applications based on

SMA technology by providing best practices and design tools. It developed a modeling framework

for three frequently applied SMA actuators.

Recent breakthroughs have expanded the scope of SMA applications. Xia et al. [12] introduced an

iron-based superelastic alloy system with optimized critical stress. Compared with NiTi, this iron-
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based SMA has a low cost and improved cold workability. Costanza [13] reviewed SMA applications

in the aerospace field, emphasizing their added value beyond economic benefits. In the field of addi-

tive manufacturing, Lu et al. [14] highlighted the enhanced mechanical and shape memory properties

of TiNi using heat treatment homogenization.

Pushin et al.[15] explored copper-based shape memory alloys with commercial potential, finding high

strength and plasticity, as well as a high shape memory effect. Shen et al.[16] established a simulation

model for SMA actuator motion, while Terrile et al.[17] presented a real robot actuated with SMA

springs, optimizing its performance using finite elements and neural networks.

In various fields, including automotive and aerospace, researchers are exploring innovative applica-

tions of SMAs. Liu et al.[18] addressed challenges in tracking control in SMA-actuated systems,

while Turabimana et al.[19] proposed an active engine cooling system utilizing SMA-based ther-

mostat. In the pursuit of high-temperature shape memory alloys, Gomez et al.[20] investigated the

thermal stability of Cu-Al-Ni shape memory alloy thin films suitable for technologies operating at

elevated temperatures.

The evolving research landscape in the field of shape memory alloys demonstrates their broad ap-

plicability, complex properties, and the importance of understanding and studying them for various

technological advancements.

2.3 Constitutive Model

Researchers have long been engaged in developing comprehensive constitutive models for shape

memory alloys (SMAs). These models are crucial for accurately describing the complex thermo-

mechanical behavior of SMAs under various loading conditions.

Brinson[21] compared and simplified popular SMA constitutive models, emphasizing that the dis-

tinction between these models lies primarily in the formulation of the transformation kinetics. Fur-

thermore, Paiva[22] proposed a constitutive model for SMAs that considers both tensile-compressive

asymmetry and plastic strains in their thermomechanical behavior. Bahrami[23] delved into frac-



14 Chapter 2. Literature Review

ture investigations and proposed a constitutive model to explore the pseudoelastic-plastic behavior

of SMAs up to fracture, drawing from phase transformation models and the Gurson-Tvergaard-

Needleman (GTN) model.

Recent research in the last five years has brought forth new advancements in constitutive models for

SMAs. Yu et al.[24] introduced a crystal plasticity-based constitutive model for NiTi SMAs, consid-

ering various mechanisms of inelastic deformation and extending the single crystal model to a poly-

crystalline version. They focused on modeling the martensite reorientation and zero/negative thermal

expansion in shape memory alloys, introducing a microstructure-based theoretical model with non-

linear constitutive aspects. Mostofizadeh et al.[26] implemented one-dimensional thermomechanical

constitutive equations into the self-heating method to study fatigue of SMAs efficiently. Furthermore,

Phillips et al.[27] incorporated non-linear internal damage growth into an SMA constitutive model,

which proved effective for lifetime predictions under various loading conditions.

While simple constitutive models provide an initial understanding of SMA behavior and can be com-

putationally efficient, complex models offer more detailed insights and accuracy, especially when

capturing the intricate thermomechanical responses of SMAs under diverse loading scenarios. The

choice between simple and complex methods depends on the specific requirements of the study, bal-

ancing computational cost with the need for accuracy and comprehensiveness.

The constitutive models employed in SMA research play a crucial role in accurately describing their

thermomechanical behavior. Both simple and complex models contribute to advancing our under-

standing of SMAs and are essential tools for various engineering applications.

2.4 Nonlinear Dynamics

The investigation of non-linear dynamics of a structure is important for application and control of

the structure. Kiros[28] discusses the significance of analyzing nonlinear dynamic structures and the

use of MATLAB simulations based on two types of nonlinear FRF construction methods, namely

Harmonic Balance and Multiple Input Multiple Output (MIMO) or Multiple Input Single Output
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(MISO) techniques. The limit of chaos is also determined, and good results are achieved and verified

using harmonic balance and FRF. The paper concludes by discussing the practical applications of

determining the limit of chaos in nonlinear systems.

Investigating the bifurcation and Lyapunov exponents of a structure is crucial for understanding its

dynamic behavior and stability. Bifurcation analysis helps in identifying regions of bistability, where

the system exhibits multiple stable states, providing insights into how the system responds to vary-

ing parameters. On the other hand, analyzing Lyapunov exponents quantifies the system’s chaotic

nature and sensitivity to initial conditions. Positive Lyapunov exponents indicate chaotic behavior,

while negative values suggest stability. This information is essential for predicting long-term system

behavior, optimizing design, developing effective control strategies, and enhancing performance. By

studying bifurcation and Lyapunov exponents, researchers can gain a comprehensive understanding of

the system’s dynamics, enabling them to make informed decisions for design, control, and prediction

in engineering applications[7].

In the study by Rajagopal et al. [29] on multistability in Horizontal Platform Systems (HPS) with

and without time delays, numerical simulations were employed to simulate bifurcation diagrams and

calculate Lyapunov exponents. For the bifurcation diagram simulation, the authors utilized a method

where they varied a specific parameter, such as the forcing parameter h within the range of 9.8 to 12.2,

and plotted the local maxima of the coordinate x2. This approach, known as forward and backward

continuation, allowed them to identify regions of multistability by comparing forward and backward

bifurcation diagrams.

To simulate the bifurcation diagram, De Paula et al. [30] explored the system’s behavior through nu-

merical simulations using a fourth-order Runge–Kutta method with linear interpolation on the delayed

variables. This numerical approach allows for the visualization of bifurcation patterns and transitions

in the system’s dynamics as control parameters are varied, providing insights into the system’s re-

sponse to different conditions.

The simulation of the bifurcation diagram in the study by De Paula et al. [31] was conducted using

an iterative numerical procedure based on the operator split technique, the orthogonal projection

algorithm, and the classical fourth-order Runge–Kutta method. This approach allowed for a detailed
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analysis of the system’s dynamic behavior, enabling the researchers to explore the effects of parameter

variations and control strategies on the stability and chaotic characteristics of the SMA two-bar truss

system.

The method employed by Bessa et al. [6] to simulate the bifurcation diagram involves varying the

forcing parameter γ while keeping other parameters such as frequency Ω and damping parameter ξ

constant. By systematically changing the value of γ and observing the corresponding behavior of

the system, the researchers were able to analyze the response of the shape memory two-bar truss

under different conditions, identifying points where the system transitions between different types of

behavior.

Huang et al. [32] generated bifurcation diagrams by plotting stroboscopically sampled displacement

values under a slow quasi-static increase of the driving force amplitude, considering different dissi-

pation, temperature, and frequency parameters to explore the system’s responses, including periodic,

quasi-periodic, and chaotic behaviors.

Varadharajan et al. [7] analyzed system for the property of bistability to simulate the bifurcation dia-

gram. They performed a bifurcation analysis to understand the existence of bistability in mechanical

systems, employing a technique known as forward and backward continuation. This method provid-

ed a systematic way to analyze the bifurcation behavior of the system and identify the presence of

bistability, crucial for understanding the complex dynamics of mechanical systems.

In calculating the Lyapunov exponents, Rajagopal et al. [29] adopted a technique involving the syn-

chronization of identical systems coupled by a linear negative feedback mechanism. This method

enabled them to determine the exact Lyapunov exponents, which were crucial for assessing the chaot-

ic behavior and stability of the system. The Lyapunov exponents were calculated as λ1 = 0.2311 and

λ2 =−1.5245 for the Time Delayed Horizontal Platform System (TDHPS).

The method employed by Danca et al. [33] to simulate the Lyapunov exponent for fractional-

order systems involves modeling the system using Caputo’s derivative, constructing an extended

system with the initial value problem and variational system, and utilizing the predictor-corrector

Adams–Bashforth–Moulton method for numerical integration. This method provides insights into
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the average rate of divergence or convergence of orbits in fractional-order systems, aiding in under-

standing system behavior and stability.

The calculation of Lyapunov exponents by De et al. [30] involves approximating the continuous

evolution of the infinite-dimensional system by a finite number of elements where values change at

discrete time steps. This approximation allows for the determination of the largest Lyapunov expo-

nent, which is crucial for stability analysis of unstable periodic orbits in the system.

Bessa et al. [6] calculated the Lyapunov exponent to quantify the sensitivity to initial conditions and

determine the presence of chaos in the system. By computing the Lyapunov exponent, the researchers

were able to assess the rate at which nearby trajectories in phase space diverge or converge.

De et al. [31] utilized an iterative numerical procedure integrating the operator split technique, the

orthogonal projection algorithm, and the classical fourth-order Runge–Kutta method to simulate the

Lyapunov exponent. This comprehensive approach facilitated a detailed investigation of the Lyapunov

exponents and their role in understanding the chaotic dynamics and control mechanisms of the SMA

two-bar truss system.

Huang et al. [32] utilized Wolf’s algorithm to estimate the Lyapunov exponents, characterizing the

system’s sensitivity to initial conditions by quantifying the exponential divergence of nearby orbit-

s. The signs of the Lyapunov exponents provide insights into the system’s dynamics, with positive

exponents indicating chaotic behavior.

Varadharajan et al. [7] employed Wolf’s algorithm to simulate the Lyapunov exponent, providing

a quantitative measure of the system’s chaotic behavior and valuable insights into its dynamics and

stability.

The findings from the bifurcation and Lyapunov exponent analyses in the study by A. Savi[6] pro-

vided crucial insights into the dynamic behavior of the shape memory two-bar truss. The bifurcation

analysis revealed the system’s response to varying the parameter γ , showcasing transitions between

periodic and chaotic motion at different values. Furthermore, the computation of the Lyapunov expo-

nent offered a quantitative measure of the system’s sensitivity to initial conditions and the presence of

chaos. Overall, these discoveries not only validated the complex nature of the smart structure but also
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underscored the importance of considering nonlinear dynamics and chaos in the design and control

of such systems.

The investigations conducted by de. Paula[31] shed light on the dynamic behavior and stability char-

acteristics of the SMA two-bar truss system. By iteratively analyzing the bifurcation diagram, the

researchers observed the system’s response to varying forcing parameters and control actions, high-

lighting the effectiveness of the time-delayed feedback control method in stabilizing unstable periodic

orbits and avoiding bifurcations. Furthermore, the Lyapunov exponent analysis provided a deeper

understanding of the system’s chaotic dynamics and the impact of control strategies on stabilizing

specific dynamic behaviors.

Z. Huang’s[32] study revealed intriguing insights into the dynamic behavior of the shape memory

alloy supporter. Through numerical simulations, the researchers generated bifurcation diagrams that

showcased the system’s responses under different conditions of dissipation, temperature, and frequen-

cy parameters. Furthermore, the estimation of Lyapunov exponents provided a deeper understanding

of the system’s sensitivity to initial conditions. These discoveries not only enriched the understanding

of the system’s behavior but also demonstrated the effectiveness of the employed numerical methods

in capturing and analyzing bifurcation and chaotic phenomena. However, the exitation considered in

this study is a periodic signal which is nonrealistic.

The research by M. Varadharajan et al.[7] provided significant insights into the complex dynamics of

the quasi-periodically excited three-leg supporter with shape memory alloy. Through the bifurcation

analysis, the researchers identified regions of bistability in the system, which can have implications

for controllability in mechanical systems. Furthermore, the estimation of Lyapunov exponents using

Wolf’s algorithm provided crucial insights into the system’s behavior. Overall, these investigations

offered a comprehensive understanding of the system’s dynamics, showcasing bistability behavior

and chaotic attractors. However, the exitation used in the above study is a quasi periodic with two

terms. This does not show the complex exitation phenomenon that could happen of tripod supporter

with three legs.
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2.5 Nonlinear Control

The study by De Paula[30] applied the Extended Time-Delayed Feedback Control (ETDFC) method

to stabilize unstable periodic orbits (UPOs) within a chaotic attractor in a nonlinear pendulum system.

By adjusting control parameters R and K to target negative Lyapunov exponents, the controller suc-

cessfully stabilized a period-1 UPO for various R values, including the Traditional Delayed Feedback

Control (TDFC) case (R = 0). However, for a period-2 UPO, stabilization was unattainable with R =

0, illustrating the distinction between TDFC and ETDFC. These results demonstrate the effectiveness

of the ETDFC method in achieving stability for specific UPOs by manipulating control parameters to

influence the system’s dynamics and Lyapunov exponents.

Liu and Zheng[34] propose an adaptive robust fuzzy controller, designed to stabilize uncertain chaotic

systems by approximating nonlinear functions through fuzzy logic. This approach enhances control

performance and robustness, validated through simulations on a unified chaotic system .

Additionally, Rajagopal et al.[35] investigate the dynamics of a Fractional Order Phase Converter with

Disturbances and Parameter Uncertainties (PCDPU), developing controllers to suppress chaotic oscil-

lations. Their controllers effectively mitigate chaos within finite time, addressing model uncertainties

and parameter variations.

Bessa et al.[36] present an adaptive fuzzy sliding mode controller for uncertain underactuated me-

chanical systems, combining sliding mode control with fuzzy inference to improve set-point regu-

lation and trajectory tracking. Experimental validation on an overhead container crane confirms its

effectiveness.

Building on this, Bessa’s[37] study focuses on stabilizing unstable periodic orbits of chaotic systems

using an adaptive fuzzy sliding mode controller. This method showcases superior performance in sta-

bilizing chaotic systems with uncertain dynamics and unknown dead-zone inputs, validated through

numerical simulations.

In the domain of chaotic system synchronization, Chihn et al.[38] employ Adaptive Fuzzy Sliding

Mode Control (AFSMC) to synchronize uncertain fractional-order chaotic systems with time delay,
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achieving rapid synchronization through meticulous simulations .

Depaula’s[39] comparative study categorizes chaos control methods, emphasizing the success of

continuous-time methods like time-delayed feedback and Variable Structure Controller. These meth-

ods effectively stabilize unstable periodic orbits observed in SMA structures .

Bessa’s[6] utilization of a neuro fuzzy sliding mode controller for vibration stabilization in a two-bar

truss highlights the adaptability and robustness of adaptive control strategies, crucial for coping with

modeling inaccuracies and external disturbances .

In summary, adaptive fuzzy sliding mode controllers emerge as promising solutions for handling

uncertainties in complex systems like SMAs. While other controllers offer simplicity, AFSMC stands

out for its adaptability and robustness, making it suitable for nonlinear and uncertain systems.



3
Mathematical Model and stability analysis

In this chapter, the mathematical model for a tripod supporter with SMA (Shape Memory Alloy)

bars is developed, employing the Falk polynomial constitutive model to characterize the behavior of

the SMA material and incorporating Newton’s 2nd law. Then, the stability analysis is performed by

calculating the equilibrium points and their respective eigen values. The process involves initially p-

resenting the constitutive model that describes the characteristics of the shape memory alloy material.

Subsequently, the equation of motion for the entire system is formulated. The system geometry is de-

scribed using the figure 3.1[7]. The final mathematical model is employed to calculate the equilibrium

and eigenvalues.

21
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Figure 3.1: System geometry of the SMA supporter

3.1 Mathematical Model

In [32], σ is obtained by describing the shape memory alloy behavior in a polynomial constitutive

model[5]. In this paper, the polynomial constitutive model described by Equation (3.1) is used be-

cause it requires minimal material parameters and computational power. The polynomial constitutive

model:

σ = a1(T −Tm)ε −a2ε
3 +a3ε

5 (3.1)

Where:

• Tm is the temperature below which martensite is stable.

• ε is the strain.

• a1,a2,a3 are the shape memory alloy parameters.

• T is the temperature.

The Austenite Temperature is:

TA = TM +
1
4
(

a2
2

a1a3
) (3.2)

The expression for ε can be obtained using the system geometry: The ε can be expressed using the

system geometry:

ε =
L
L0

−1 = cos
ϕ0

ϕ
−1, L =

√
B2 + x2 (3.3)
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Substituting (3.3) into (3.1) gives:

σ = a1(T −Tm)

√
B2 + x2

L
−1−a2

(√
B2 + x2

L
−1

)3

+a3

(√
B2 + x2

L
−1

)5

(3.4)

Including (3.4) for σ in the Newtons equation of motion (??) gives us:

−3

a1(T −Tm)

√
B2 + x2

L
−1−a2

(√
B2 + x2

L
−1

)3

+a3

(√
B2 + x2

L
−1

)5
(A)sin(ϕ)+P=

md2x
dt2

(3.5)

m
d2X
dt2 + c

dX
dt

+3A
X
L0

{a1(T −TM)(

√
B2 +X2

L0
)−a2(

√
B2 +X2

L0
)3 +a3(

√
B2 +X2

L0
)5 = P (3.6)

The dimensionless equation becomes:

ẋ = y

ẏ = γ(sin(Ω1τ)+ sin(Ω2τ)+ sin(Ω3τ))−ξ y

+ x [−((θ −1)−3α2 +5α3)

+((θ −1)−α2 +α3)(x2 +b2)−
1
2

−(3α2 −10α3)(x2 +b2)
1
2

+(α2 −10α3)(x2 +b2)

+5α3(x2 +b2)
3
2 −α3(x2 +b2)2

]

(3.7)

where:

w2
0 =

3Aa1TM

mL0
, γ =

P0

mL0w2
0
, ξ =

c
mw0

, α2 =
a2

a1TM
, α3 =

a3

a1TM
,

Ω =
w
w0

, b =
B
L0

, θA =
TA

TM
, x =

X
L0

, θ =
T
TM

, τ = w0t

The Simulink model of tripod supporter with SMA bars could be formulated according to the mathe-
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matical model developed. The blocks required to form the model are listed as follows;

• State space block: There are two state blocks to represent the state variables of x and y.

• Sine wave block: There are three sine wave blocks to represent the quasi-periodic excitation

with three terms.

• Gain blocks: These are blocks that multiply signals by constants like γ , α2, α3.

• Sum Blocks: These blocks combine the outputs of gain blocks, sine wave blocks, and power

blocks.

• Power Blocks : These blocks raise specific terms to the powers of 1/2, 3/2, and 2 as required by

the equation.

• Sqare Block: This block calculates the square root of x2 +b2.

Figure 3.2: System simulink Model

3.2 Stability analysis

The stability of a system could be determined through the process of finding equilibrium points and

their respective eigenvalues. Equilibrium point of a set of ordinary differential equation is a solution
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that does not change with time. It is a point in the state space at which the dynamical system will stay

if it starts from that point. It could be found by solving the general equaiton (3.8).

Ẋ = f (x) = 0 (3.8)

For the tripod supporter, the equilibrium points are calculated considering the unforced system from

equation. The forcing term γ sin(Ω1τ)+ sin(Ω2τ)+ sin(Ω3τ) is discarded from the equation and it is

equated to zero as shown in Equation(3.9).

0 = y

0 = γ sin(Ω1τ)+ sin(Ω2τ)+ sin(Ω3τ)−ξ y

+ x [−((θ −1)−3α2 +5α3)

+((θ −1)−α2 +α3)(x2 +b2)−
1
2

−(3α2 −10α3)(x2 +b2)
1
2

+(α2 −10α3)(x2 +b2)

+5α3(x2 +b2)
3
2 −α3(x2 +b2)2

]

(3.9)

The eigenvalues are determined by finding the jacobian matrix of the system.

The Jacobian matrix for a general system of n first-order differential equations is defined as shown in

3.10 :

J =



∂ f1
∂x1

∂ f1
∂x2

· · · ∂ f1
∂xn

∂ f2
∂x1

∂ f2
∂x2

· · · ∂ f2
∂xn

...
... . . . ...

∂ fn
∂x1

∂ fn
∂x2

· · · ∂ fn
∂xn


(3.10)

where fi(x1,x2, . . . ,xn) are the n functions describing the system of differential equations, and x1,x2, . . . ,xn

are the variables of the system.
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To find the Jacobian matrix for the tripod supporter with SMA system of differential equations, it is

done the computing of the partial derivatives of each equation with respect to each variable according

to(3.10)

The Jacobian matrix J is given by as shown in 3.11:

J =


∂ ẋ
∂x

∂ ẋ
∂y

∂ ẏ
∂x

∂ ẏ
∂y

 (3.11)

where

∂ ẋ
∂x

= 0

∂ ẋ
∂y

= 1

∂ ẏ
∂x

=
[
−((θ −1)−3α2 +5α3)+((θ −1)−α2 +α3)(x2 +b2)−

1
2

−(3α2 −10α3)(x2 +b2)
1
2 +(α2 −10α3)(x2 +b2)+5α3(x2 +b2)

3
2 −α3(x2 +b2)2

]
∂ ẏ
∂y

=−ξ

Then, the Jacobian matrix J for the tripod supporter according (3.11) is given by (3.12):

J =


0 1

A −ξ

 (3.12)

where A
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A =−((θ −1)−3α2 +5α3)+((θ −1)−α2 +α3)(x2 +b2)−
1
2

− (3α2 −10α3)(x2 +b2)
1
2

+(α2 −10α3)(x2 +b2)+5α3(x2 +b2)
3
2 −α3(x2 +b2)2

The characteristic equation of a matrix J is given by as shown in (3.13)

|J−λ I|= 0 (3.13)

where I is the identity matrix. Substituting Equation (3.13) into the characteristic Equation (3.14),

gives (3.14): ∣∣∣∣∣∣∣∣∣∣


−λ 1

A −ξ −λ


∣∣∣∣∣∣∣∣∣∣
= 0 (3.14)

Expanding the determinant, we have (3.15):

(−λ ) · (−ξ −λ )− (A ·1) = 0 (3.15)

Simplifying (3.15) gives Equation (3.16):

λ
2 +ξ λ +A = 0 (3.16)

This is the characteristic equation for the tripod supporter with SMA system. The above way of

stability analysis could be treated analytically or numerically employing matlab code. The matlab

code required to find the equilibrium points and eigen values is provided in the AppendixA.





4
Non-linear analysis and AFSMC design

4.1 Dynamical analysis

4.1.1 Phase Portrait

A phase portrait is a diagram that illustrates all qualitatively different trajectories of a system. In a

phase portrait, a point is imagined to move along the real line according to the local velocity f (x).

When f (x)> 0, the point moves in the right direction, and when f (x)< 0, the point moves in the left

direction [40].

The appearance of a phase portrait is determined by the fixed points, also known as equilibrium

29
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Figure 4.1: Phase Space

points. Stable fixed points (where small perturbations will damp out over time) are represented in a

phase portrait by solid black dots, while unstable fixed points (where small perturbations will grow)

are represented by open dots.

Phase portraits can be generated using various methods, including computer simulation, analytical

methods, and the method of isoclines. Numerical computer simulation is widely used due to its

simplicity. There is a MATLAB function program called pplane8 that can generate phase portraits,

and it is also possible to generate them using the Simulink XY scope.

Analytical methods are limited to generating phase portraits for only simple differential equations

and piecewise linear systems. The method of isoclines can handle all nonlinearities; however, it is

computationally challenging.

The phase portrait of the tripod supporter with a shape memory alloy supporter is simulated by nu-

merically integrating the system dynamics and correlating the velocity and displacement in the x− y

graph. The Simulink XY plot is used to display the phase portrait of the tripod supporter with the S-

MA system. The Simulink model of the system used to simulate the phase portrait is shown in Figure

4.2.



4.1. Dynamical analysis 31

Figure 4.2: Simulink Model for Phase Portrait Simulation

4.1.2 Bifurcation

The approach utilized to generate the bifurcation diagram involves identifying the peaks of the x-

coordinate as γ or ξ increases gradually. This process effectively pinpoints the range where the system

exhibits bistability. The methodology could be implemented by employing a MATLAB function

detailed in AppendixB, which generates both forward and backward continuation simulations. The

flowchart depicting the sequential steps of this MATLAB function is illustrated in Figure(4.3).

To elaborate, the method iteratively explores the parameter space, incrementally adjusting γ or ξ while

monitoring the resulting behavior of the system. At each step the local maxima of the x-coordinate

are identified. These maxima incomparison with the reverse continuation maxima signify the regions

of bistability where the system can exhibit multiple stable states. By systematically traversing the

parameter space in this manner, a comprehensive understanding of the system’s behavior and bistable

regions is attained.

4.1.3 Lyapunov Exponents

The calculation of Lyapunov Exponents (LEs) is a fundamental technique in the analysis of dynamical

systems to understand their stability and chaotic behavior. The Lyapunov Exponents quantify the

exponential rates of divergence or convergence of nearby trajectories in the system’s phase space.

Lyapunov exponent describes the system trajectories convergence or sensitivity to initial condition. If

there is one positive Lyapunov exponent, the system is called chaotic system. This means for a small
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Figure 4.3: Flowchart for bifurcation diagram simulation
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variation of initial condition the system trajectory diverges. If all Lyapunov exponents are negative

then the system does not diverge for a small variation of initial condition.

The calculation of Lyapunov Exponents employing the system mathematical model is complex and

it takes a lot of time. However, using matlab buildin function the largeset lyapunov exponent of a

system could be obtained by using input the systems time series trajectories. The builtin function can

be writen as LLE= lyapunovexponent(x, fs) where x is the systems timeseries trajectory and fs is the

sampling time used to obtain the trajectory. The Lyapunov Exponents are then examined to determine

the stability and chaotic behavior of the system.

4.2 Controller Design

4.2.1 Adaptive Fuzzy Sliding Mode Control

Sliding mode control is a method that transforms system dynamics into a new stable compensat-

ed form within finite time, damping these dynamics asymptotically. The following section outlines

the methodology utilized for designing the sliding mode controller. Upon incorporating the control

variable into the ordinary differential equation (ODE), it takes the form:

dx
dt

= y,
dy
dt

= f +d +u (4.1)

where:

• u represents the control action,

• d denotes the external disturbance given by γ(sin(ω1)+ sin(ω2)+ sin(ω3)),

• The function f is defined as:
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f =−ξ y+ x
[
−
(
(θ −1)−3α2 +5α3

)
+(

(θ −1)−α2 +α3

)
(x2 +b2)−

1
2−(

3α2 −10α3

)
(x2 +b2)

1
2+(

α2 −10α3

)
(x2 +b2)+

5α3(x2 +b2)
3
2 −α3(x2 +b2)2

]

Several assumptions are made:

1. The state vector x is accessible.

2. The function f is unknown but bounded by a known function of x.

3. The disturbance d is unknown but bounded by |d| ≤ D.

The compensated dynamics is represented by:

σ = y+λx (4.2)

Resulting in the equivalent control:

u =− f̂ −d −λy− ksat
(

s
φ

)
(4.3)

Where sat(s/φ) is introduced to ensure system robustness, with φ being a strictly positive constant.

The gain k is determined as stated in Equation (4.4):

k ≥ η +F+D+ |d̂| (4.4)
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Where η is a strictly positive constant associated with the time required to attain the sliding surface.

The adaptive fuzzy approach is employed to approximate the disturbance d effectively. Fuzzy systems

serve as universal approximators, capable of approximating any function with arbitrary accuracy. The

zero-order Takagi-Sugeno-Kang (TSK) fuzzy inference system is adopted, with rules defined in the

following linguistic form.

If s is Sr, then dr = Dr; r = 1,2, . . . ,N, where Sr are fuzzy sets with appropriately chosen membership

functions, and Dr represents the output value of each of the N fuzzy rules.

The estimated disturbance d̂(s) is computed using a weighted average of the outputs d̂r, determined

by the weights wr. These weights are based on the firing strength of each rule. To improve the

estimate accuracy, the vector of adjustable parameters D is updated using an adaptation law, taking

into account the system state s and the firing strengths as stated in Equation (4.5):

˙̂D = ϑΨ(s) (4.5)

where ϑ is a positive constant of the adaptation rate. The Simulink models depicting the tripod system

with the AFSMC and the sliding mode controller are presented in Figures 4.4 and 4.5, respectively.

4.2.2 Controller Performance Assessment Criteria

The performance of a controller is crucial for evaluating its effectiveness in maintaining the system

within desired parameters. Various criteria are employed to assess this performance, capturing differ-

ent aspects such as error magnitude, time response, and stability characteristics.

4.2.2.1 Integral Absolute Error (IAE)

Integral Absolute Error (IAE) is a commonly used criterion for evaluating controller performance. It

quantifies the cumulative absolute deviation of the system output from the desired setpoint over time.

Mathematically, IAE is defined as:
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Figure 4.4: Tripod system with the AFSMC

Figure 4.5: Adaptive Fuzzy Sliding Mode Controller Simulink Model
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IAE =
∫

∞

0
|yd p(t)− ya(t)|dt (4.6)

Where:

• yd p(t) is the desired setpoint,

• ya(t) is the actual system output.

The integral in Equation 4.6 sums up the absolute differences between the desired setpoint and the

actual output over the entire time horizon.

4.2.2.2 Integral Time Absolute Error (ITAE)

Integral Time Absolute Error (ITAE) is another performance criterion that considers both the error

magnitude and the time it takes to reach a steady state. It is defined as the integral of the absolute

error weighted by time:

ITAE =
∫

∞

0
t|yd p(t)− ya(t)|dt (4.7)

Similar to IAE, ITAE penalizes larger errors more severely, with an additional emphasis on minimiz-

ing the settling time.

4.2.2.3 Integral Square Error (ISE)

Integral Square Error (ISE) focuses on minimizing the squared error between the desired setpoint and

the actual output over time. It is given by:

ISE =
∫

∞

0
|(yd p(t)− ya(t))2|dt (4.8)
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ISE provides a measure of the overall deviation of the system response from the desired trajectory,

with larger errors contributing significantly to the total score.

4.2.2.4 Undershoot and Overshoot

Undershoot and overshoot are crucial performance metrics, especially in systems where rapid re-

sponse and stability are paramount.

Undershoot refers to the phenomenon where the system’s output initially falls below the desired

setpoint before reaching steady-state. It is quantified as the maximum negative deviation from the

setpoint.

Overshoot, on the other hand, occurs when the system’s output exceeds the desired setpoint before

stabilizing. It is measured as the maximum positive deviation from the setpoint.

4.2.2.5 Fall Time

Fall time measures the time taken by the system’s response to transition from a specified percentage

(e.g., 90

These additional performance metrics provide comprehensive insights into the behavior and effec-

tiveness of control systems, aiding in the selection and tuning of controllers for optimal performance.
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Result and Discussion1

5.1 Introduction

This chapter presents the outcomes of numerical simulations investigating the nonlinear dynamics of

a tripod supporter with shape memory alloy (SMA) and its integration with Adaptive Fuzzy Sliding

Mode Control (AFSMC). Initially, the equilibrium points and their stability are delineated. Subse-

quently, the analysis results aim to shed light on the system’s behavior during the martensite, austen-

ite, and transition phases. The chapter is structured accordingly, focusing on each phase. Within each

phase, simulations encompass phase portraits, bifurcations, and Lyapunov exponents assessments un-

der quasi-periodic excitation with three terms. The influence of the AFSMC on system behavior over

time will be stated through the obtained results. System parameters are adopted from the study con-

39
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ducted by Huang et al. (2008) [32], where α2 = 124, α3 = 14505, b = 0.7071, γ = 0.045, and the

frequencies of the quasi periodic signal are taken Ω1 = 0.5, Ω2 = ((
√

5−1)/2), and Ω3 = Ω1 +Ω2.

5.2 Equilibrium Points and Their Stability

The equilibrium points for the tripod supporter with SMA, are found to be E1 = (0,0) and E2 =

(0,−0.552) as depicted in Figure(5.1).

Figure 5.1: Equilibrium Points

These equilibrium points represent stable or unstable configurations of the system where the net forces

and torques acting on it are balanced.

Their respective eigenvalues describe the behavior of small perturbations around these equilibrium

points. For equilibrium point 1 (E1), the eigenvalues are λ1 = 6.25 and λ2 =−6.35. This indicates that

equilibrium point 1 is a saddle point, which is unstable. For equilibrium point 2 (E2), the eigenvalues

are λ1 =−0.05−1.2i and λ2 =−0.05+1.2i. This suggests that equilibrium point 2 is a stable spiral.

The eigenvalues are depicted in Figure (5.2).
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Figure 5.2: Eigenvalues

5.3 Dyanamics in Martensite phase

In this case low temperature (θ = 0.69) martensite phase is considered and the dynamical behaviour

during this phase is analysed using phase portrait, bifurcation diagram, and Lyapunov exponent sim-

ulation.

To simulate the phase portrait, the model is supplied with parameters α2 = 124, α3 = 14505, b =

0.7071, and the frequencies of the quasi periodic signal are taken as γ = 0.045, Ω1 = 0.5, Ω2 =

((
√

5−1)/2), and Ω3 = Ω1+Ω2. Two damping conditions are considered: one with ξ = 0.1 and the

other with ξ = 1.5.

For ξ = 0.1, the system exhibits chaotic behavior with a strange attractor.

The phase portrait depicted in Figure(5.3) illustrates the complex behavior of the system under the

damping condition ξ = 0.1. The presence of a strange attractor indicates chaotic dynamics, where

the system’s trajectory appears highly sensitive to initial conditions, resulting in seemingly random

behavior over time.

For a higher value of the damping coefficient, the system does not exhibit chaotic behavior. Specifi-

cally, for ξ = 1.5, the system exhibits attracting tori.
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Figure 5.3: Phase portrait for ξ = 0.1

Figure 5.4: Phase portrait for ξ = 1.5
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Figure(5.4) displays the phase portrait for ξ = 1.5. Unlike the chaotic behavior observed for ξ = 0.1,

the system under this damping condition demonstrates the presence of attracting tori. These tori

indicate stable periodic motion, where the system’s trajectory converges to specific attractor surfaces

rather than exhibiting chaotic dynamics.

These results underscore the significant influence of the damping coefficient ξ on the system’s behav-

ior. A low damping coefficient can lead to chaotic dynamics characterized by a strange attractor, while

a higher damping coefficient promotes stability and periodic motion, as evidenced by the presence of

attracting tori.

The Lyapunov exponent calculated using [41] indicates a positive largest Lyapunov exponent λ =

0.206 when ξ = 0.1, suggesting the existence of chaos. Conversely, for ξ = 1.5, both Lyapunov

exponents are negative, signifying the absence of chaos. The positive Lyapunov exponent describes

the system’s sensitivity to the initial condition. The time series for ξ = 0.1 and for close initial

conditions (0.6,0) and (0.60001,0) illustrate this sensitivity, as depicted in Figure 5.5.

Figure 5.5: Time series for ξ = 0.1, showing sensitivity to initial conditions

The negative Lyapunov exponent indicates the convergence of the system for close initial conditions.

The time series for ξ = 1.5 and for close initial conditions (0.6,0) and (0.60001,0) illustrate this

convergence, as shown in Figure 5.6.

Bifurcation diagrams serve as indispensable tools for qualitatively describing the system’s behavior,
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Figure 5.6: Time series for ξ = 1.5, demonstrating convergence for close initial conditions

particularly regarding bistability, across a spectrum of parameters, including γ and ξ . This analysis

is pivotal for comprehending how the system manifests bistability under diverse parameter configura-

tions. By maintaining other parameters constant, the bifurcation diagram examines the change in be-

haviour for varying γ through both forward and backward continuation methods, with ξ = 0.1, thereby

unveiling a bistability condition. The coexistence of forward (blue) and backward (red) branches in

Figure(5.7) attests to this bistable nature.

Bistability, though occasionally advantageous in specific applications, can introduce complications

and adverse effects in others. For instance, it can engender unpredictable behavior and instability

within control systems, impeding the attainment of desired performance or the maintenance of system

stability over time. Moreover, bistability may increase the complexity of system analysis and design,

potentially prolonging development timelines and increasing associated costs.

Furthermore, the assessment of bifurcation diagrams for varying damping parameters also under-

scores the existence of bistability, as evidenced in Figure(5.8).
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Figure 5.7: Bifurcation diagram for varying γ with ξ = 0.1

Figure 5.8: Bifurcation diagram for varying ξ
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5.4 Dynamics in Transition phase

In this case a temperature where transition from martensite to austenite phase occurs is considered.

This phase consists both phases. The temperature coefficient θ = 1.04 is in the transition phase.

Since small damping coefficient doesn’t have much effect on the system dynamics for ξ = 0.1 the

system shows a chaotic attractor. For higher damping coefficient the system have an attracting tori

Figure 5.9: Phase portrait in transition phase for ξ = 0.1

behaviour. A positive largest Lyapunov exponent λ = 0.18 when ξ = 0.1 for the transition phase,

Figure 5.10: Phase portrait in transition phase for ξ = 1.5
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suggesting the existence of chaos. Conversely, for ξ = 1.5, both Lyapunov exponents are negative,

signifying the absence of chaos. The positive Lyapunov exponent describes the system’s sensitivity

to the initial condition. The time series for ξ = 0.1 and for close initial conditions (0.6,0) and

(0.60001,0) illustrate this sensitivity, as depicted in Figure(5.11). The trajecotries begin to diverge at

the time around 45sec.

Figure 5.11: Time series for ξ = 0.1, showing sensitivity to initial conditions

The negative Lyapunov exponent indicates the convergence of the system for close initial conditions.

The time series for ξ = 1.5 and for close initial conditions (0.6,0) and (0.60001,0) illustrate this

convergence, as shown in Figure(5.12).

The forward and backward continuation bifurcation diagram for varying amount of γ shows bistability

in the region from γ = 0 to 0.0005 as shown in Figure(5.13).

5.5 Dynamics in Austensite Phase

The austenite phase is stable at high temperatures. The phase portrait for small damping coefficients

exhibits a chaotic attractor as shown in Figure(5.14). For a higher value of the damping coefficient

ξ = 1.5, the system exhibits attracting tori as shown in Figure(5.15).

The Lyapunov exponent for ξ = 0.1 is a positive number 0.17, which shows the system’s chaotic
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Figure 5.12: Time series for ξ = 1.51, showing convergence to initial conditions

Figure 5.13: Bifurcation in transition phase for ξ = 0.1
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Figure 5.14: Phase portrait in Austenite phase for ξ = 0.1

Figure 5.15: Phase portrait in Austenite phase for ξ = 1.5
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behavior as shown in the time series Figure(5.16). The trajectories start to divert at around 75sec.

Figure 5.16: Time series for ξ = 0.1, showing sensitivity to initial conditions

The Lyapunov exponent for ξ = 1.5 is a negative number, which shows the system’s convergence

behavior as shown in the time series Figure(5.17).

Figure 5.17: Time series for ξ = 1.5, showing convergence to initial conditions

However, looking at the forward and backward continuation bifurcation diagram at the austenite phase

also shows bistability as stated in Figure(5.18).
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Figure 5.18: Bifurcation in Austenite phase for ξ = 1.5

5.6 Adaptive Fuzzy Sliding Mode Controller

The Adaptive Fuzzy Sliding Mode Controller (AFSMC), proposed by Bessa et al.[42], effectively

reduces vibrations caused by unknown disturbances. It employs a combination of fuzzy logic and

sliding mode control techniques to handle uncertainties in nonlinear systems. By adaptively adjusting

its parameters, AFSMC demonstrates superior performance compared to the conventional Sliding

Mode Controller (SMC).

The parameters k, λ , and φ are crucial in AFSMC’s operation. k = 0.67+ d̂, λ is a gain which is set

to 1, and φ is a parameter that decreases the chattering in the SMC. The desired input considered is

[xd , yd] = [0, 0], aligning with the controller’s objective to reduce vibrations in the tripod structure.

To handle the complexity of the system and reduce computational burden, AFSMC employs a com-

bination of triangular and trapezoidal membership functions in its adaptive fuzzy system. These

functions, depicted in Figure 5.19, efficiently represent the system’s behavior and facilitate accurate

estimation of disturbances.

The adaptive fuzzy system accurately approximates the unknown disturbance, which, in this case,

exhibits quasi-periodic behavior with three terms excitation. Figure 5.20 illustrates the estimation

process, showcasing the system’s ability to closely match the actual disturbance profile.
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Figure 5.19: Membership Function for the adaptive fuzzy

Figure 5.20: Estimation of disturbance using Adaptive Fuzzy System

The effectiveness of AFSMC is further demonstrated through its performance across different phases

of the system: martensite, transition, and austenite.

5.6.1 Martensite phase

In the martensite phase, AFSMC performs well, as shown in Figure(5.21). The controller effective-

ly reduces overshoot and undershoot, achieving a quick response time. Table 5.1 further confirms

the controller’s effectiveness with minimal overshoot and undershoot. A comparison with SMC in

Figure(5.22) and Table 5.2 validates the superiority of AFSMC.

Comparing AFSMC with SMC, as depicted in Figure 5.22 and Table 5.2, reinforces AFSMC’s ro-

bustness and adaptability. In both transition and austenite phases, AFSMC maintains consistent per-

formance, as shown in Figures 5.23 and 5.25, respectively. The similar performance metrics across

phases underscore AFSMC’s ability to handle varying system dynamics effectively.

In summary, AFSMC’s consistent performance across all phases highlights its robustness and adapt-
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Figure 5.21: AFSMC Performance in Martensite Phase

Figure 5.22: Comparison of AFSMC and SMC in Martensite Phase
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S.N Performance Measurement Value

1 Fall Time 2.133

2 Overshoot 1.995%

3 Undershoot 1.020%

4 ITAE 0.6653

5 IAE 0.6058

6 ISE 0.1808

Table 5.1: AFSMC Controller Performance in Martensite Phase

Measurement AFSMC SMC

Fall time 2.133 2.591

Overshoot 1.995% 2.00%

Undershoot 1.020% 2.388%

ITAE 0.6653 2.845

IAE 0.6058 1.034

ISE 0.1808 0.3464

Table 5.2: Comparison of AFSMC and SMC Performance in Martensite Phase

ability in stabilizing the system and reducing vibrations. Its superiority over SMC in terms of fall

time, overshoot, and undershoot reaffirms its effectiveness in practical applications.

5.6.2 Transition Phase

In the transition phase, AFSMC maintains consistent performance, as shown in Figure 5.23. The sim-

ilarity in performance metrics between the martensite and transition phases highlights the robustness

of AFSMC across varying system dynamics. Comparative analysis with SMC is presented in Figure

5.24.
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Figure 5.23: AFSMC in Transition Phase

Figure 5.24: Comparison of AFSMC and SMC in Transition Phase
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S.N Performance Measurement Value

1 Fall Time 2.133

2 Overshoot 1.995%

3 Undershoot 1.020%

4 ITAE 0.6653

5 IAE 0.6058

6 ISE 0.1808

Table 5.3: AFSMC Controller Performance in Transition Phase

Measurement AFSMC SMC

Fall time 2.133 2.591

Overshoot 1.995% 2.00%

Undershoot 1.009% 2.388%

ITAE 0.6653 2.845

IAE 0.6058 1.034

ISE 0.1808 0.3464

Table 5.4: Comparison of AFSMC and SMC Performance in Transition Phase

5.6.3 Austenite Phase

AFSMC continues to demonstrate efficacy in the austenite phase, as illustrated in Figure 5.25. The

controller achieves rapid settling without significant overshoot or undershoot. Table 5.5 highlights the

controller’s superiority over SMC.

AFSMC consistently performs well across all phases, indicating its robustness and adaptability in sta-

bilizing the system and reducing vibrations. Its superiority over SMC in terms of fall time, overshoot,

and undershoot reaffirms its effectiveness in practical applications.
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Figure 5.25: AFSMC in Austenite Phase

Figure 5.26: Comparison of AFSMC and SMC in Austenite Phase
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S.N Performance Measurement Value

1 Fall Time 2.133

2 Overshoot 1.995%

3 Undershoot 1.009%

4 ITAE 0.6653

5 IAE 0.6058

6 ISE 0.1808

Table 5.5: AFSMC Controller Performance in Austenite Phase

Measurement AFSMC SMC

Fall time 2.133 2.591

Overshoot 1.995% 2.00%

Undershoot 1.009% 2.388%

ITAE 0.6653 2.845

IAE 0.6058 1.034

ISE 0.1808 0.3464

Table 5.6: Comparison of AFSMC and SMC Performance in Austenite Phase
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Conclusion and Recommendation

6.1 Conclusion

In this study, the non-linear dynamics of a tripod supporter integrated with shape memory alloy (S-

MA) is explored and investigated the effectiveness of an Adaptive Fuzzy Sliding Mode Controller

(AFSMC) in stabilizing the system across different phases: martensite, transition, and austenite. The

analysis provided valuable insights into the behavior of the system under various conditions.

During the martensite phase, it is observed chaotic behavior with λ = 0.2 under low damping coef-

ficients, while higher damping coefficients led to attracting tori behavior. Bifurcation diagrams illus-

trated the system’s stability for different parameters, indicating bistability with forcing or damping

59
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parameter variations.

In the transition phase, which involves both martensite and austenite phases, it is observed similar

dynamics with chaotic behavior with λ = 0.18 under low damping coefficients and attracting tori

under higher damping coefficients. Bifurcation diagrams further demonstrated the system’s bistability

to parameter variations.

In the austenite phase, characterized by high temperatures, the system exhibited chaotic behavior with

λ = 0.17 under small damping coefficients. Still, bistability was observed in this phase.

The AFSMC with parameters λ = 1, k = 0.67+ d̂, and φ = 0.1 showed consistent performance across

all phases, effectively reducing overshoot(1.995%) and undershoot(1.020%) while achieving rapid

settling. The falltime of AFSMC is 2.134sec. Comparative analysis with the conventional Sliding

Mode Controller (SMC) demonstrated the superiority of AFSMC in terms of fall time, overshoot, and

undershoot.

Overall, this study highlights the robustness and adaptability of AFSMC in mitigating disturbances

and stabilizing the tripod supporter system across different phases.

6.2 Recommendations

Based on the comprehensive analysis conducted in this study, several recommendations can be made

to further advance the understanding and application of shape memory alloy (SMA) systems integrat-

ed with Adaptive Fuzzy Sliding Mode Control (AFSMC).

Firstly, the study considers the quasi-periodic excitation with three terms of frequency, which de-

scribes the complex excitation occurring in real life. However, the system dynamics for random

excitation also need to be considered for future works.

Secondly, the system considered in this study is an archetypal model. Thus, it should be correlated

with real structures made of shape memory alloy. Additionally, the mechanism of the actuator em-

ployed to implement the controller is not considered in this study, presenting a potential avenue for
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future research ideas.

Additionally, the mathematical model employed in this research is developed using integer order

method. Mathematical model employing fractional order calculus could be developed to accurately

describe the system behaviour.

Moreover, while AFSMC has demonstrated superior performance in reducing vibrations compared to

traditional control methods, there is still scope for optimizing its implementation in practical appli-

cations. Future research efforts should focus on refining the design and implementation of AFSMC

algorithms to enhance their effectiveness and efficiency in real-world scenarios.

In conclusion, by addressing these recommendations, future research endeavors can contribute to

advancing the state-of-the-art in SMA-based systems and AFSMC control, ultimately paving the way

for their widespread adoption in various engineering applications.
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A
Matlab code for calculating and ploting

Equilibrium points and Eigenvalue

Listing A.1: MATLAB code

clear all; clc; close all

syms x1 x2

xi =0.1;

alpha2 =124;

alpha3 =14505;

gamma =0.045;

b=0.707;

theta =0.69;

[solx1 , solx2] =solve(x2 ==0, (- xi * x2 +

x1 * ((-theta + 1 + (3 * alpha2) - (5 * alpha3 )) +

(theta - 1 - alpha2 + alpha3) * (x1^2 + b^2)^( -1/2) -

(3 * alpha2 - 10 * alpha3) * (x1^2 + b^2)^(1/2) +

(alpha2 - 10 * alpha3) * (x1^2 + b^2)

+ 5 * alpha3 * (x1^2 + b^2)^(3/2) -

alpha3 * (x1^2 + b^2)^2)) ==0, x1, x2);

x1val = vpa(solx1 );

x2val = vpa(solx2 );
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E1 =[x1val (1,:); x2val (1 ,:)];

E2 =[x1val (2,:); x2val (2 ,:)];

figure ();

scatter(E1(1,:), E1(2,:),'filled ');

hold on;

scatter(E2(1,:), E2(2,:),'filled ');

xlabel('x'); ylabel('y');

legend('E_1','E_2');

title('Equilibrium point');

J = jacobian ([x2, (- xi * x2 +

x1 * ((-theta + 1 + (3 * alpha2) - (5 * alpha3 ))

+ (theta - 1 - alpha2 + alpha3) * (x1^2 + b^2)^( -1/2)

- (3 * alpha2 - 10 * alpha3) * (x1^2 + b^2)^(1/2)

+ (alpha2 - 10 * alpha3) * (x1^2 + b^2)

+ 5 * alpha3 * (x1^2 + b^2)^(3/2) -

alpha3 * (x1^2 + b^2)^2))] ,[x1 , x2]);

J1 = subs(J,{x1 , x2},{E1(1,:), E1(2 ,:)});

eigE1=vpa(eig(J1));

J2 = subs(J,{x1 , x2},{E2(1,:), E2(2 ,:)});

eigE2=vpa(eig(J2));

figure ();

axis equal;

axis([-7, 7, -7, 7]);

xlabel('Real axis', 'Fontsize ', 12);

ylabel('Img axis', 'Fontsize ', 12); grid;

hold on;

plot(real(eigE1 (1,:)), imag(eigE1(1, :)), 'bp',

real(eigE1 (2,:)), imag(eigE1(2, :)), 'bp');

plot(real(eigE2 (1,:)), imag(eigE2(1, :)),

'rp', real(eigE2 (2,:)), imag(eigE2(2, :)), 'rp');

line ([0 0], ylim , 'Color', 'black', 'Linewidth ', 1);

line(xlim , [0 0], 'Color', 'black', 'Linewidth ', 1);

title('Eigen Values of the equilibrium points ');



B
Matlab code for ploting forward and backward

continuation Bifurcation diagram

Listing B.1: MATLAB code

% Clear workspace

clear

clear global

% Define global variables

global gamma xi theta alpha2 alpha3 Omega1 Omega2 Omega3 b

xi = 1.5;

%gamma =0.045;

alpha2 = 124;

alpha3 = 14505;

Omega1 = 0.5;

Omega2 = 0.618;

Omega3 = 1.18;

b = 0.707;

theta = 0.69;

% Simulation step

dt = 1;

% Set initial conditions
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x0 = [0.6, 0];

% Parameter range of interest

stepinterval = 0:0.0003:1;

stepinterval1 = 1: -0.0003:0;

% Presave a matrix of NaNs

M = NaN * zeros (1000 , length(stepinterval ));

pos = 0;

% Set ode options

options = odeset('RelTol ',1e-5,'AbsTol ',1e-5);

% Loop over parameter range

for gamma = stepinterval

gamma

pos = pos + 1;

% Simulate the system

[t, x] = ode45(@tripod_newbif , 0:dt:1000, x0, options );

% Discard transient

index = t > 400;

X = x(index , :);

% Find local maxima

P = findpeaks(X(:, 1));

M(1: length(P), pos) = P;

end

% Presave a matrix of NaNs for the second range

M1 = NaN * zeros (1000, length(stepinterval1 ));

pos1 = 0;

x0 = x(end ,:);

% Loop over the second parameter range

for gamma = stepinterval1

gamma

pos1 = pos1 + 1;

% Simulate the system

[t, x] = ode45(@tripod_newbif , 0:dt:1000, x0, options );

% Discard transient

index = t > 700;

X = x(index , :);
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% Find local maxima

P = findpeaks(X(:, 1));

M1(1: length(P), pos1) = P;

end

% Plot the result

hold on

plot(stepinterval , M, '.b', 'MarkerSize ', 2) % Changed color to blue

plot(stepinterval1 , M1 , '.r', 'MarkerSize ', 2) % Plotted the second range in red

xlabel('\xi')

ylabel('max(x)')

set(gca , 'fontsize ', 12)

set(gca , 'fontweight ', 'bold')

box on





C
Matlab code for implementing the adaptive

fuzzy system

Listing C.1: MATLAB code

function d_hat_s = adaptiveFuzzyLogic(s)

% Define membership functions

function S = openleft(x, a, b)

if x < a

S = 1;

elseif a < x && x < b

S = (x - a) / (b - a);

else

S = 0;

end

end

function S = openright(x, a, b)

if x < a

S = 0;

elseif a < x && x < b

S = (x - a) / (b - a);

else

S = 1;

end
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end

function S = triangular(x, a, b, c)

if x < a

S = 0;

elseif a < x && x < b

S = (x - a) / (b - a);

elseif b < x && x < c

S = (c - x) / (c - b);

else

S = 0;

end

end

% Define partition function

function [S1, S2, S3, S4, S5, S6, S7] = partition(x)

S1 = openleft(x, -0.007, -0.001);

S2 = triangular(x, -0.005, -0.001, -0.0005);

S3 = triangular(x, -0.001, -0.0005, 0);

S4 = triangular(x, -0.0005, 0, 0.0005);

S5 = triangular(x, 0, 0.0005 , 0.001);

S6 = triangular(x, 0.0005 , 0.001 , 0.005);

S7 = openright(x, 0.001, 0.007);

end

% Partition the input value s

[S1, S2, S3 , S4 , S5 , S6 , S7] = partition(s);

% Define adaptive parameters

% Initialize D vector with zeros (column vector)

D_initial = zeros(7, 1);

phi = 0; % Adaptation rate constant

% Compute Psi(s)

w = [S1 , S2 , S3 , S4 , S5 , S6 , S7];

if sum(w) ~= 0

Psi_s = w / sum(w);

% Define parameters for the ODE solver

% Adjust tolerance

options = odeset('RelTol ', 1e-6, 'AbsTol ', 1e-9);

tspan = [0, 1000]; % Define the initial and final time

% Call the ODE solver

[~, D] = ode45(@(t, D) myODE(t, D, s, Psi_s , phi), tspan , D_initial , options );

% Compute the weighted average output d_hat(s)
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d_hat_s = sum(D(end , :) .* Psi_s);

else

d_hat_s = 0;

end

end

% Define the ODE function outside the main function

function dDdt = myODE(~, D, s, Psi_s , phi)

% Function to define the ODE system

dDdt = phi * s * Psi_s ';

end
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